中学受験算数   アニメーション教材

不思議な休憩室

不思議体験!おすすめ動画

円の面積は?(今年 2018年 お茶の水女子大学附属中学)

----------------------------------------------------

1辺の長さが2cmの正三角形4枚を使って、

図のような立 体 ABCD を作りました。

10231

 

机の上で、図の立体を下の手順で順番にたおし、

机に接したすべての面が入る最も小さい円を1つかいたとき、

この円の面積は何㎠ですか。ただし, 円周率は3.14 とします。

手順

①図のように、BCDの面が下になるように机の上に立体を置く。

②辺BDを動かさないようにして、頂点Aが机につくようにたおす。

③辺ABを動かさないようにして、頂点Cが机につくようにたおす。

④辺BCを動かさないようにして、頂点Dが机につくようにたおす。

Paper

----------------------------------------------------

----------------------------------------------------

解法のヒント

机に接した面は図のようになります。

10232

141

----------------------------------------------------

----------------------------------------------------

解法例

正六角形の一部なので、

円はBを中心にした半径2cmの円になります。

10233

2×2×3.14=12.56㎠

41
 

 

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

分野別解法集はこちらから

----------------------------------------------------

682

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ!  ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

何mはなれているかな?(今年 2018年 早稲田大学高等学院中学部)

----------------------------------------------------

2000mはなれたA地点とB地点の間を太郎さんと次郎さんが走ります。

2人は A地点に着いたときも、B地点に着いたときも

休みを入れて反対方向に走ることをくり返します。

太郎さんは分 速250mで走り、休みの時間を60秒とします。

次郎さんは分速200mで走り、休みの時間を90秒とします。

いま、2つの地点の中間地点から太郎さんがA地点へ、

次郎さんがB地点へ向かって同時に走り始めました。

9221

このとき、次の問い に答えなさい。

(1)

太郎さんが初めてB地点から出発するとき、

次郎さんと何m はなれているかを求めなさい。

(2)

2人が同じ方向に向かって走っているときに、

初めて800mはなれるのは走り始めてから何分後ですか。

(3)

太郎さんがA地点、B地点を経て出発地点を通過した後、

コースの途中で向きを変えて次郎さんと同時にB地点に到着したい。

このとき、太郎さんはA地点から何mはなれた地点で

向きを変えればよいかを求めなさい。

720

Paper
 

----------------------------------------------------

----------------------------------------------------

解法のヒント

図で表すと考えやすくなります。

(1)

9251

太郎がB地点を出発するまでの時間は、

図からわかるように、

3000÷250+2=14より

14分後です。

5802_2

----------------------------------------------------

----------------------------------------------------

解法例

9252

そのとき次郎は図のように

14-(1000÷200+1.5)=7.5 より、

B地点から7.5分後のところにいます。

きょりはB地点から、

200×7.5=1500mです。

(2)

9253

図のように次郎がA地点に着いたとき、16.5分後なので、

太郎は、250×(16.5-14)=625m より、

A地点から、2000-625=1375mで、

800m以上の差がついています。

太郎がA地点を出発するときは23分後なので、

そのとき次郎は、A地点から5分後の

200×5=1000mの中間地点にいます。

そこから、1000-800=200m差が縮まる時間は、

200÷(250-200)=4分後なので、

23+4=27分後になります。

(3)

9254

図のように、太郎が中間地点まで来るのに、18分

このとき次郎は、A地点を出発しようとしています。

B地点まで10分で到着するので、

太郎の中間地点から折り返し点までのきょりを△mとすると、

(1000+2×△)÷250=10 なので、

2×△=1500

△=750 より、

A地点から、

1000-750=250mの地点で折り返せばいいわけです。

6082

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

コースの長さは?橋の長さは?(今年 2018年 桐朋中学)

----------------------------------------------------

下の図のように、 池のまわりを1周する ランニングコースと、

池にかかる橋があります。

その橋はランニングコースの P地点とQ地点の間にかかっています。

A、B、Cの3人がP地点から同時に出発して、次のように移動しました。

10201

AはP地点を出発して、分速160mで走り、

X地点、Q地点、Y地点 を通ってP地点に戻りました。

BはP地点を出発して、分速80mで歩き、

Y地点を通って、Q地点から橋を渡ってP地点に戻りました。

CはP地点を出発して、分速60mで歩き、

X地点を通って、Q地点から 橋を渡ってP地点に戻りました。

3人がP地点を出発して4分30秒後に、AとBはY地点で出会いました。

また、AがP地点に戻ってから1分 55秒後に、CはP地点に戻りました。

(1)ランニングコース1周の道のりは何mですか。

(2) CがP地点を出発してから、P地点に戻るまでにかかった時間は

  何分何秒でしたか。

(3) Bが Q地点を通ってから 30秒後にCがQ地点を通りました。

  橋の 長さは何mですか。

Paper

----------------------------------------------------

----------------------------------------------------

解法のヒント

1212

10202

Y地点で4分30秒後にAとBは出会いました。

2人は、160+80=分速240mで近づいていったわけです。

----------------------------------------------------

----------------------------------------------------

解法例

1212_e0

(1)

(160+80)×4.5=1080m

(2)

AがP地点にもどったのは、

1080÷160=6.75分=6分45秒後なので、

CがP地点にもどったのは、

6分45秒+1分55秒=8分40秒後

(3)

BがQ地点に着いたとき、

Cはその手前30秒、60÷2=30mの地点にいます。

10203

つまり、1080-30=1050mを2人で歩いたことになり、

その時間は、1050÷(80+60)=7.5=7分30秒です。

CはQ地点まで、7分30秒+30秒=8分で着き、

橋を、8分40秒-8分=40秒で渡ったので、

橋の長さは、60m×2/3分=40m です。

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

立体アの体積の何倍?(今年 2018年 東大寺学園中学)

----------------------------------------------------

立体アは各面の対角線(例えば AB)の長さが2cmの立方体、

立体イは4つの面がすべて1辺の長さが2cmの正三角形である三角 すい、

立体ウは底面が1辺の長さが2cmの正方形で、

4つの側面がすべて1辺の長さが2cm の正三角形である四角すいです。

立体イの体積、立体ウの体積は、立体アの体積のそれぞれ何倍ですか。

10161

Bandicam_20181016_173401851

Bandicam_20181016_173449880

Paper

----------------------------------------------------

----------------------------------------------------

解法のヒント

立方体から赤い4つの部分を切り取ると・・・

Bandicam_20181016_121225255

残るのはイの正四面体です。

このイの正四面体を図のように2段に積んでみると・・・

Bandicam_20181016_115833166

Bandicam_20181016_115843727

Bandicam_20181016_115855915

真ん中の空間部分の形は???

141

----------------------------------------------------

----------------------------------------------------

解法例

 Bandicam_20181016_172946418

立方体の1辺を1とすると、

赤い部分の1つ分の体積は、

1×1×1/2×1×1/3=1/6

真ん中の立体イの体積は、

1×1×1-1/6×4=1/3

したがって、イはアの1/3倍です。

正四面体1つの体積を1とすると、

Bandicam_20181016_115819228

正四面体の1辺が2倍になった正四面体全体の体積は、

Bandicam_20181016_115855915_2

2×2×2=8倍になるので、

真ん中の空間部分の体積は、

8-1×4=4

真ん中の空間部分の形は・・・

Bandicam_20181016_115901246

正八面体ですね!

Bandicam_20181016_115924112

立体ウはこの半分なので、

体積は、4÷2=2

イの正四面体の2倍の体積なので、

1/3×2=2/3

したがって、ウはアの2/3倍です。

5802

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ!  ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

«クモが捕らえられる虫はどこにいるかな?(今年 2018年 麻布中学)

スポンサード リンク


2018年10月
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31      

すずきたかし先生のネット塾

Analytics