切断すると表面積は?(吉祥女子中学 2010年)
図のように立方体を点線部分で分けて、同じ形の直方体を3つ作ります。3つの直方体の表面積の合計は、もとの立方体の表面積の何倍ですか。
FaceBookをなさっている方で、この記事が気に入ったら押してみて下さい。
« 正六角形と正三角形の基本問題(春日部共栄中学 2010年) | トップページ | 円を折る(駒込中学 2010年) »
「ゲーム」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 2つの砂時計で11分を計ってみよう!(2012年 頌栄女子学院中学 )(2023.05.01)
- 図形が回転した軌跡はどんな形かな?2017年 学習院女子中等科)(2023.04.29)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 面積計算しやすいように、等積移動をしてみよう! (2017年 東京農業大学第一高等学校中等部)(2023.04.21)
「ニュース」カテゴリの記事
- 水面の高さと体積(桜美林中学 2010年)(2011.07.26)
- 条件にあった数は?(駒場東邦中学 2008年)(2011.07.14)
- すれ違う通過算(慶應義塾湘南藤沢中等部 2010年)(2011.07.11)
- 面積差(白陵中学 2010年)(2011.07.10)
- どこが等しくなるか(市川中学 2010年)(2011.07.08)
「学問・資格」カテゴリの記事
- 今年の入試問題から、和差算と平均算(桐朋中学 2014年)(2014.07.03)
- 点の移動による面積比は?(暁星国際中学 2012年)(2014.06.21)
- 図形移動の基本問題(洛南高等学校附属中学 2010年)(2012.03.21)
- 今年の早稲田中学の問題(早稲田中学 2012年)(2012.03.18)
- 円周上の旅人算と周期性(フェリス女学院中学 2006年)(2012.03.11)
「日記・コラム・つぶやき」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 2つの砂時計で11分を計ってみよう!(2012年 頌栄女子学院中学 )(2023.05.01)
- 図形が回転した軌跡はどんな形かな?2017年 学習院女子中等科)(2023.04.29)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 面積計算しやすいように、等積移動をしてみよう! (2017年 東京農業大学第一高等学校中等部)(2023.04.21)
「中学受験」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 2つの砂時計で11分を計ってみよう!(2012年 頌栄女子学院中学 )(2023.05.01)
- 図形が回転した軌跡はどんな形かな?2017年 学習院女子中等科)(2023.04.29)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 面積計算しやすいように、等積移動をしてみよう! (2017年 東京農業大学第一高等学校中等部)(2023.04.21)
「算数」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 2つの砂時計で11分を計ってみよう!(2012年 頌栄女子学院中学 )(2023.05.01)
- 図形が回転した軌跡はどんな形かな?2017年 学習院女子中等科)(2023.04.29)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 面積計算しやすいように、等積移動をしてみよう! (2017年 東京農業大学第一高等学校中等部)(2023.04.21)
「平面図形」カテゴリの記事
- 面積計算しやすいように、等積移動をしてみよう! (2017年 東京農業大学第一高等学校中等部)(2023.04.21)
- 補助線マジックで瞬察!(灘中学 過年度)(2023.04.18)
- 前問の解答が次の問いのヒントになりますよ(2023年 吉祥女子中学)(2023.04.14)
- 等積変形してみると解答が見えてくる!(2015年 慶應義塾湘南藤沢中等部)(2023.03.20)
- 一瞬のひらめきで明察してみよう!(2023年 女子学院中学)(2023.02.23)
「立体図形」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 平面と平面が交わると、そこは直線になりますね。(2023年 開成中学)(2023.02.09)
- 長さの比は?(豊島岡女子学園中学 2022年)(2022.02.24)
- 面積比は? 体積比は?(渋谷教育学園幕張中学 2022年)(2022.02.12)
「パズル」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 2つの砂時計で11分を計ってみよう!(2012年 頌栄女子学院中学 )(2023.05.01)
- 図形が回転した軌跡はどんな形かな?2017年 学習院女子中等科)(2023.04.29)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 面積計算しやすいように、等積移動をしてみよう! (2017年 東京農業大学第一高等学校中等部)(2023.04.21)
「クイズ」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 2つの砂時計で11分を計ってみよう!(2012年 頌栄女子学院中学 )(2023.05.01)
- 図形が回転した軌跡はどんな形かな?2017年 学習院女子中等科)(2023.04.29)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 面積計算しやすいように、等積移動をしてみよう! (2017年 東京農業大学第一高等学校中等部)(2023.04.21)
« 正六角形と正三角形の基本問題(春日部共栄中学 2010年) | トップページ | 円を折る(駒込中学 2010年) »
コメント