中学受験算数   アニメーション教材

不思議な休憩室

不思議体験!おすすめ動画

« 2011年11月 | トップページ | 2012年1月 »

2011年12月

答から計算式を求める問題(巣鴨中学 2011年)

「4」のカードが4枚と、「+」、「-」、「×」、「÷」、「 ( 」、「 )」 のカードがたくさんあります。これらのカードをならべて計算式を作ります。ただし、「4」のカードは必ず4枚使うものとします。

たとえば、答えが 0 になる計算式には次のようなものがあります。

 4 + 4 - 4 - 4 = 0

 4 × 4 - 4 × 4 = 0

 4 4 - 4 4 = 0

 ( 4 - 4 ) × 4 ÷ 4 = 0

このとき、次の問に答えなさい。答えは計算式を書きなさい。ただし、求める計算式がない場合は、「 なし 」 と答えなさい。

(1)答えが 7 になる計算式を1つ求めなさい。

(2)答えが 10になる計算式を1つ求めなさい。

(3)答えが 1,2,3,4,5,6,8,9 になる計算式を、それぞれ1つずつ求めなさい。

こたえ

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

立体を重ねた表面積(立教新座中学 2010年)

下の図1のような、たて12cm、横4cm、高さ2cmの直方体が10個あります。

1

これらの直方体を次のように積み重ねたとき、立体の表面積を求めなさい。

(1)図2のように、下から4個、3個、2個、1個と積み重ねた立体の表面積を求めなさい。

2

(2)下の図3のように、(1)の積み重ね方で、1番下の段の両はしの直方体2個と、下から3段目の直方体2個を横向きに置き直した立体の表面積を求めなさい。

3

考え方と答え

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

工夫してとく計算(逗子開成中学 2008年)

次の計算をしなさい。

 1.11+2.22+3.33+4.44+5.55+6.66+7.77+8.88+9.99

502

工夫例とこたえ

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

赤、青、白玉の個数は?(桐朋中学 2011年)

箱の中に、赤玉と白玉と青玉が入っています。赤玉の個数は6の倍数で、青玉の個数は7の倍数です。白玉が赤玉より10個多く、青玉が白玉より8個多いとき、次の問に答えなさい。

(1)青玉の個数として考えられる数のうち、最も小さいものを求めなさい。 

(2)箱の中に400個以上の玉が入っています。白玉の個数として考えられる数のうち、最も小さいものを求めなさい。

Cocolog_oekaki_2011_12_27_17_58

考え方と答え

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

体積の合計(雙葉中学 2011年)

2種類の積み木(ア)と(イ)が合わせて48個あり、その体積の合計は 2280c㎥ です。(ア)は立方体で、(イ)は直方体です。

(ア)の体積の合計は、(イ)の体積の合計より 1192c㎥ 大きく、(イ)のたて、横、高さは、(ア)の1辺の長さの、それぞれ5/21倍、15/7倍、28/25倍 です。

(1)(ア)の体積の合計を求めなさい。

(2)(ア)は何個ありますか。

考え方と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

円を重ねる(早稲田実業中等部 2010年)

1

上の図のように同じ大きさの円を重ねて描いていきます。円の中の数字は、その円が接している円の数を表します。このとき、次の問に答えなさい。

(1)5段目まで描いたとき、書かれている数をすべて足すといくらになりますか。

(2)ある段まで円を描いて、「4」の数が書かれた円を数えると87個ありました。このとき「6」の数が書かれた円は何個ありますか。

(3)ある段まで円を描いて、「6」の数が書かれた円を数えると4950個ありました。このとき描いた円は何段目までですか。

考え方と答え

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

立体の表面積(東京女子学園中学 2010年)

下の図は,底面の半径が7cmの円柱の上に,底面の半径が3cmの円柱を重ねたものです。2つの円柱の高さは等しく,ともに7cmであるとき,この立体の表面積を求めなさい。

1

考え方と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

光源と影(聖光学院中学 2010年)

下の図のように、机から40cmの高さに光源P があり、机から20cm の高さには、机の面Sに平行に半径5cm の円板があります。円板の中心O は、光源Pから机の面Sにまっすぐに下ろした直線PH の上にあります。このとき、次の問に答えなさい。ただし、円板の厚さは考えないものとし、円周率は3.14とします。

1

(1)円板を直線PH の上方向(光源に近づける方向)に10cm移動したときの机の面S に映る影と、元の位置から円板を下方向(机に近づける方向)に5cm 移動したときの机の面S に映る影との面積の差を求めなさい。

(2)机の面S に平行に、元の位置から円板を左に5cm 移動すると、その影の円もそのまま左に移動します。このとき、机の面S に映る円板の影が移動してできる図形の面積を求めなさい。

(3)円板を(2)の位置から直線PH を軸(じく)として反時計回りに90°回転させます。このとき、机の面S に映る円板の影が移動してできる図形の面積を求めなさい。

イメージ図と答え

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

展開図から体積を求める(ラ・サール中学 2011年)

下の図の展開図を組み立ててできる角柱について、次の問に答えなさい。

(1)この立体の体積を求めなさい。

(2)辺CE のまん中の点をMとして、この立体を3点A,B,Mを通る平面で切るとき、点Cを含む立体の体積を求めなさい。

なお、角すいの体積は、底面積×高さ÷3 です。

1

考え方と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

のりしろの大きさ(洗足学園中学 2010年)

1辺の長さが3cmの正方形の紙を下の図のように,すべてののりしろが同じ大きさの正方形となるように重ねていきます。図の太い線で囲まれた図形について,次の問いに答えなさい。

1

(1)のりしろの1辺の長さが1cmのとき,この紙を5枚重ねてできる図形のまわりの長さは何cmですか。

(2)のりしろの1辺の長さが1cmのとき,この紙を何枚重ねると図形のまわりの長さが100cmになりますか。

(3)この紙を10枚重ねてできる図形のまわりの長さが66cmとなるには,のりしろの1辺の長さを何cmにすればよいですか。

考え方と答え

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

規則に従った計算(灘中学 2008年)

下の手順で計算することを1回の操作と呼ぶことにします。


1

(1)A を最初に「1」として、この操作を5回くりかえしたとき、A を仮分数で表しなさい。

(2)さらにこの操作を何回くり返すと、A の分母が初めて5桁になりますか。ただし、A は最初の値を除いて、これ以上約分できない仮分数で表すものとします。

考え方と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

食塩水の難問(栄東中学 2011年)

2つの容器A,Bがあり、容器Aには5%の食塩水200g、容器Bには15%の食塩水300g が入っています。このとき、次の問に答えなさい。

(1)容器A と容器B に入っている食塩水をすべて混ぜ合わせると何%の食塩水ができますか。

(2)容器A から 何g かの食塩水を捨てた後、容器B から 何g かの食塩水を容器A に混ぜると、9%の食塩水300g ができました。容器A から 何g の食塩水を捨てましたか。

(3)容器A と容器B からそれぞれ同じ重さの食塩水を取り出し、容器A から取り出した食塩水を容器B へ、容器B から取り出した食塩水を容器A へ移したところ、容器B の濃度が、容器A の濃度の2倍になりました。容器A から容器B へ 何g の食塩水を移しましたか。

考え方と答え

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

三角形の面積比(鴎友学園女子中学 2011年)

図のような、AE:ED=1:3、AF:FB=1:2の平行四辺形ABCDがあります。

(1)三角形FBIと三角形CHIの面積の比を、最も簡単な整数の比で表しなさい。

(2)三角形CHIと三角形EGDの面積の比を、最も簡単な整数の比で表しなさい。

1215

考え方と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

立方体の展開図(筑波大学附属中学 2011年)

下の図1,図2 は、同じ立方体の展開図で、立方体には3つの面に、1,2,3 の数字がそれぞれ1つずつ書かれています。 このとき、図2の展開図に、数字の「2」、「3」を向きに気をつけて書きこみなさい。

1

イメージ図と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

水そうとグラフ(豊島岡女子学園中学 2011年)

1辺が50cmの立方体の水そうと、どの辺の長さも50cmより短い直方体のレンガがあります。レンガの3つの面には、下の図1のようにA,B,C と描かれています。平らな面の上に置かれた空の水そうの中に、下の図2のようにレンガを平らに置き、毎分1000立法センチメートルの割合で水を入れます。A,B,C のそれぞれの面を下にしたときの3つの場合について、水を入れ始めてからの時間と水の深さの関係を調べました。下の図3のグラフは、面A と面B を下にして置いた場合の時間と水の深さの関係を表したものです。このとき、次の問に答えなさい。

1

(1)面B の面積を求めなさい。

(2)水を入れ始めてから水の深さが36cm になるまでの時間を考えます。面Aを下にして置いた場合は、面C を下にして置いた場合より何分何秒早くなりますか。

考え方と解答

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

ニュートン算(開成中学 2011年)

西山動物園では、開門前に長い行列ができていて、さらに、一定の割合で入園希望者が行列に加わっていきます。開門と同時に、券売機を5台使うと20分で行列がなくなり、開門と同時に、券売機を6台使うと15分で行列がなくなります。また、もし開門のときの行列の人数が50人少なかったとすると、開門と同時に券売機を7台使うと10分で行列がなくなります。開門前の行列に並んでいる人数はいつも同じものとして、次の問に答えなさい。

(1)開門のとき、行列の人数は何人ですか。

(2)開門と同時に、券売機を10台使うと、何分で行列がなくなりますか。

考え方と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

111111111111(麻布中学 2011年)

1が12個ならんだ整数 111111111111 の約数について、次の問に答えなさい。

(1)1、11、111、1111、11111、111111、1111111、

11111111、111111111、1111111111、

11111111111、111111111111 のうち、

111111111111 の約数をすべて選びなさい。

(2)すべての位の数字が0か1であるような約数のうち、

(1)で選んだ数以外のものを7つ答えなさい。

考え方と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

斜線部分の面積(明治大学付属明治中学 2009年)

図は、半径が10cmで、中心角が90°のおうぎ形OABです。おうぎ形OABのAからBまでの円周の部分を3等分する点をC、Dとするとき、斜線の四角形ABDCの面積は何c㎡ですか。

1

イメージ図と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

野球選手の成績(大阪星光学院中学 2011年)

安打数を打数で割ったものを【打率】といいます。ある野球選手の昨日までの打率は3割7分5厘でしたが、今日は6打数3安打だったため、打率は4割ちょうどになりました。この選手が明日、打率4割5分以上になるためには、6打数何安打以上の成績が必要ですか。

1_2

考え方と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

面積比と面積(東海中学 2009年)

1

(1)図1のように、正方形ABCD、正方形AEFG、正方形GHIJがあり、AG:GD=1:2のとき、正方形AEFG:正方形GHIJの面積比を求めなさい。

(2)図2のように、1辺9cmの正方形ABCDがあり、CDの真ん中の点を点Pとし、AP上に点Q,AB上に点Rをとり、直角二等辺三角形PQRを作った。このとき、三角形PQRの面積を求めなさい。

考え方と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

立体の展開図はどれ?(慶應義塾普通部 2011年)

下の図1は立方体で、A,B,C は各辺のまん中の点です。A,B,C を通る平面で立方体を切断すると、図2の立体ができます。

1

図2の立体の展開図として正しいものを、下の図3のア~エよりすべて選びなさい。

2

イメージ図と解答

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

じゃんけんで何歩進む?(奈良学園中学 2011年)

A さんと B さんが100歩離れて向かい合って立っています。いま、2人がジャンケンをして、勝った人は2歩前進し、負けた人は1歩後退し、引き分けのときは2人とも2歩前進することに しました。52回ジャンケンをしたら、A さんは最初の位置から62歩前進した地点に B さんと共に立っていました。このとき、次の問に答えなさい。ただし、2人の歩幅は同じものとします。

【1】 52回のうち、引き分けは何回ありましたか。

【2】 52回のうち、A さんは何回勝ちましたか。

9221

考え方と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

これもよく出題される問題(土佐中学 2008年)

1から50までの50個の整数をすべてかけると、できた整数は1の位から0が続けて何個並ぶか答えなさい。 

Cocolog_oekaki_2011_12_04_10_52

考え方と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

角度と面積と長さは?(フェリス女学院中学 2011年)

下の図のように直角三角形ABC と直角三角形CDE が重なっています。頂点D は辺AB 上にあり、辺AC と辺DE の交点を点F とすると、点F は辺AC のまん中の点になりました。また、辺AC は辺BC の2倍の長さで、三角形ABC の面積が10c㎡ のとき、次の問に答えなさい。

(1)角ア の大きさを求めなさい。

(2)三角形CEF の面積を求めなさい。

(3)辺CD の長さを求めなさい。

1

イメージ図と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

理科の点数、算数の点数(成城中学 2010年)

 マユさんとリナさんが,国語,算数,理科,社会の4つの科目のテストを受けました。国語と算数はそれぞれ100点満点で,理科と社会はそれぞれ60点満点です。下の表は一部の科目の点数と4科目の合計が書かれています。また,次のことが分かっています。
①2人の国語の点数の和と,2人の算数の点数の和は同じでした。
②マユさんの理科と社会の平均点と,リナさんの理科と社会の平均点との差は9点でした。
③マユさんの国語の点数は理科の点数の2倍でした。


このことから,マユさんの理科の点数は(ア)点で,リナさんの算数の点数は(イ)点と分かります。

1201

考え方と答え

ふしぎな動画で頭の休憩→「不思議な休憩室」

にほんブログ村 受験ブログ 中学受験(本人・親)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

« 2011年11月 | トップページ | 2012年1月 »

スポンサード リンク


2017年10月
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

すずきたかし先生のネット塾

Analytics