回転体の体積(灘中学 2011年1日目)
下の図は,たて6cmよこ4cmの長方形の紙1枚と,直角をはさむ2辺の長さがどちらも3cmの直角二等辺三角形の紙4枚をはりあわせて作ったものです。ただし,のりしろは考えません。この紙がEFを軸として1回転する間に通過する部分の体積をV立法cmとすると,Vは円周率の何倍ですか。また,この紙がABを軸として1回転する間に通過する部分の体積をW立法cmとすると,Wは円周率の何倍ですか。
---------------------------------------------------
---------------------------------------------------
« ひもの長さは?(桜蔭中学 2010年) | トップページ | ビンの容積は?(豊島岡女子学園中学 2009年) »
「中学受験」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 2つの砂時計で11分を計ってみよう!(2012年 頌栄女子学院中学 )(2023.05.01)
- 図形が回転した軌跡はどんな形かな?2017年 学習院女子中等科)(2023.04.29)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 面積計算しやすいように、等積移動をしてみよう! (2017年 東京農業大学第一高等学校中等部)(2023.04.21)
「算数」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 2つの砂時計で11分を計ってみよう!(2012年 頌栄女子学院中学 )(2023.05.01)
- 図形が回転した軌跡はどんな形かな?2017年 学習院女子中等科)(2023.04.29)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 面積計算しやすいように、等積移動をしてみよう! (2017年 東京農業大学第一高等学校中等部)(2023.04.21)
「立体図形」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 平面と平面が交わると、そこは直線になりますね。(2023年 開成中学)(2023.02.09)
- 長さの比は?(豊島岡女子学園中学 2022年)(2022.02.24)
- 面積比は? 体積比は?(渋谷教育学園幕張中学 2022年)(2022.02.12)
「パズル」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 2つの砂時計で11分を計ってみよう!(2012年 頌栄女子学院中学 )(2023.05.01)
- 図形が回転した軌跡はどんな形かな?2017年 学習院女子中等科)(2023.04.29)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 面積計算しやすいように、等積移動をしてみよう! (2017年 東京農業大学第一高等学校中等部)(2023.04.21)
「クイズ」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 2つの砂時計で11分を計ってみよう!(2012年 頌栄女子学院中学 )(2023.05.01)
- 図形が回転した軌跡はどんな形かな?2017年 学習院女子中等科)(2023.04.29)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 面積計算しやすいように、等積移動をしてみよう! (2017年 東京農業大学第一高等学校中等部)(2023.04.21)
「算数オリンピック」カテゴリの記事
- この展開図、どんな立体になるかな?(2023年 早稲田実業学校中等部)(2023.05.03)
- 2つの砂時計で11分を計ってみよう!(2012年 頌栄女子学院中学 )(2023.05.01)
- 図形が回転した軌跡はどんな形かな?2017年 学習院女子中等科)(2023.04.29)
- 真上から見るとどんな図形が見えるでしょうか?(2018年 渋谷教育学園渋谷中学)(2023.04.24)
- 面積計算しやすいように、等積移動をしてみよう! (2017年 東京農業大学第一高等学校中等部)(2023.04.21)
コメント