直角三角形が増える規則性は?(筑波大学附属駒場中学 2005年)
----------------------------------------------------
直角三角形を次のような操作で、いくつかの直角三角形に分割していきます。
---------------------------------------------
ア:直角三角形の1つの辺を選び、そのまん中に印をつける。
イ:つけた印と直角三角形の頂点を線で結ぶ。
ウ:つけた印から直角三角形の他の辺に垂直な線を引く。
ただし、選んだ辺が2つの直角三角形の辺になっているときは
その2つの三角形両方にイ・ウの操作を行う。
---------------------------------------------
上の操作を1回と数え、下の図の三角形ABCを分割してできた直角三角形に、
この操作を何回もくり返していきます。
たとえば、1回目の操作を行うと、図1、図2のように、
4個、3個の直角三角形に分割されます。
また、図1に対して2回目の操作を行うと、
たとえば、図3、図4のように8個、10個の直角三角形に分割されます。
さらに3回目の操作を行うと、
たとえば図5、図6のように10個、13個の直角三角形に分割されます。
このとき、次の問に答えなさい。
(1)操作を3回行ったとき、直角三角形ABCのそれぞれの辺に印が1つずつありました。
直角三角形ABCは何個の直角三角形に分割されますか。
考えられる個数をすべて答えなさい。
(2)操作を10回行ったとき、直角三角形ABCの辺上にある印は 1個だけでした。
直角三角形ABCは最も多くて何個の直角三角形に分割されますか。
また、最も少なくて何個の直角三角形に分割されますか。
(3)操作を50回行ったとき、辺AC上にある印は10個でした。
直角三角形ABCは、最も多くて何個の直角三角形に分割されますか。
また、最も少なくて何個の直角三角形に分割 されますか。
---------------------------------------------------
----------------------------------------------------
---------------------------------------------------
最近のコメント