68分野細目記事リスト

不思議な休憩室

« 計算の規則→難しそうな記号ですが、どんな規則?(鎌倉学園中学 2009年) | トップページ | 比例問題より→道のりの比(学芸大学附属竹早中学 2010年) »

サイコロの規則性→サイコロの三面和(筑波大学附属駒場中学 2010年)

----------------------------------------------------

サイコロは向かい合う面の数の和が「7」になっています。サイコロを図1のように見ると、3つの面を同時に見ることができます。このとき見えている3つの目の数の和を【三面和】と呼ぶことにします。図1の状態の三面和は「6」です。

1

平面上に置いたサイコロを、底面のひとつの辺を軸(じく)として回転させてたおしたときの三面和を考えます。下の図2のように図1の状態から右に1回たおしたときの三面和は「7」です。

2

また、下の図3のように図1の状態から手前に1回たおしたときの三面和は「9」です。このとき、次の問に答えなさい。

3

(1)サイコロを図1の状態から、下の図4のように右に続けてたおしていきます。図1の状態から2回たおしたとき、3回たおしたとき、4回たおしたときの三面和をそれぞれ答えなさい。

4

(2)図1の状態からサイコロを、まず右に1回たおし、次に手前に1回たおし、次に右に1回たおし、次に手前に1回たおし、・・・というように、下の図5のようにたおしていきます。

5

(ア)図1の状態から2回たおしたとき、 図1の状態から3回たおしたとき、図1の状態から4回たおしたときの三面和をそれぞれ答えなさい。

(イ)図1の状態から、2010回たおしたときまでの2011個の三面和の合計を求めなさい。

規則性と答え

-----------------------------------

-----------------------------------

スマートホンアプリ「立方体の切り口はどんな形?」(ネット環境でのFlashアニメーション)

スマホ向け解法集→「中学受験ー算数解き方ポータル」

« 計算の規則→難しそうな記号ですが、どんな規則?(鎌倉学園中学 2009年) | トップページ | 比例問題より→道のりの比(学芸大学附属竹早中学 2010年) »

算数」カテゴリの記事

中学入試」カテゴリの記事

図形移動」カテゴリの記事

規則性」カテゴリの記事

クイズ」カテゴリの記事

パズル」カテゴリの記事

カード」カテゴリの記事

サイコロ」カテゴリの記事

コメント

コメントを書く

(ウェブ上には掲載しません)

トラックバック

« 計算の規則→難しそうな記号ですが、どんな規則?(鎌倉学園中学 2009年) | トップページ | 比例問題より→道のりの比(学芸大学附属竹早中学 2010年) »

スポンサード リンク


2022年2月
    1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28