スポンサード リンク


不思議な休憩室

ユーチューブ算数

カテゴリー「場合の数」の126件の記事

第2の冒険、連れ戻る方法は何通り?(海城中学 2018年)

----------------------------------------------------

----------------------------------------------------

これは、ある国のお城から魔王に連れ去られた姫を勇者が救いに行き、

もとのお城まで連れて戻ってくる冒険の物語です。

この国では格子状の道があり、行きは北か東のみ、

帰りは南か西のみ動くことができます。

第2の冒険

第1の冒険を終えた後、姫は違う街に連れ去られてしまいました。

この街で魔王は、勇者が道を1つ進むごとに、

図の A、B、C地点をA→B→C→B→A→・・・の移動を繰り返しています。

勇者がスタートする ときには魔王はA地点にいます。

したがって、勇者が道を5つ進んだときに、

魔王はB地点にいることになります。

勇者が魔王に出会わずに、

姫を無事にお城まで連れて戻ってこられる方法は何通りありますか。

7231

----------------------------------------------------

----------------------------------------------------

25

 

図解と解法例はこちらに!

529

 

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

連れ戻る道順は何通り?(海城中学 2018年)

----------------------------------------------------

----------------------------------------------------

これは、ある国のお城から魔王に連れ去られた姫を勇者が救いに行き、

もとのお城まで連れて戻ってくる冒険の物語です。

この国では格子状の道があり、行きは北か東のみ、

帰りは南か西のみ動くことができます。

第1の冒険 図のように

街には川が流れており、橋を渡って通るしかありません。

ただし、橋は1度通るとこわれてしまい、

再び通ることができなくなります。

このとき、勇者が姫を無事にお城まで連れて戻ってこられる方法は

何通りありますか。

第1の冒険 図

7225

----------------------------------------------------

----------------------------------------------------

Giff

図解と解法例はこちらに!

529

 

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

これまでの分野別算数パズル

----------------------------------------------------

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国180中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

不思議な休憩室

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

ちょっと難問! 何通りあるでしょうか?(麻布中学 2014年)

----------------------------------------------------

決められた何種類かの整数を足し合わせて

1つの整数を作る方法を考えます。

例えば,1,2,3のみを用いて5を作る方法は,

3+2,

3+1+1,

2+2+1,

2+1+1+1,

1+1+1+1+1

の5通り考えられます。

ただし,足す順序が異なるだけのものは同じ方法とします。

2,3,5のみを用いて30を作る方法は全部で何通りありますか。

Honeycam-20180514-105514

----------------------------------------------------

----------------------------------------------------

1gifyajirusi_1

考え方と解法例はこちらに!

        104

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

Dにとまる場合は何通り?(今年 2019年 海城中学)

----------------------------------------------------

図のような正方形 ABCD の頂点 A にコマを置き,

大小2つのサイコロを使って

決められた数だけ反時計回りに頂点から頂点へコマを進めていきます。

* 例えば,2だけ進めるときはコマは頂点 C にとまり,

5だけ進めるときはコマは 頂点Bにとまります。

3313

大小2つのサイコロの出た目の和だけコマを進めるとき,

コマが頂点Dにとまる目の出方は何通りありますか。

6082_2

----------------------------------------------------

----------------------------------------------------

解法例

6085_3

Dにとまる目の数は、

3、7、11 なので、

3の場合、

1-2、2-1 の2通り、

7の場合、

1-6、2-5、3-4、4-3、5-2、6-1 の6通り、

11の場合、

5-6、6-5 の2通り、

全部で、2+6+2=10通り

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

移動経路は何通り?(今年 2019年 開成中学)

----------------------------------------------------

《図1》は一辺の長さが1の正方形を2個並べて、横1、 縦2の長方形をつくり、

その長方形と 点 A、B を結ぶ道をつけたものです。

図の中で点 A と点 B を結ぶすべての線が、通ることのできる道です。

《図2》は一辺の長さが1の正方形を3個並べて、横3、縦1の長方形をつくり、

その長方形と 点 A、B を結ぶ道をつけたもので、

《図3》は一辺の長さが1の正方形を6個並べて、横3、縦2の長方形をつくり、

その長方形と点 A、B を結ぶ道をつけたものです。

それぞれ 《図1》と同 じく、

点 A、B を結ぶすべての線を道として通ることができます。

次のような規則に従ってこれらの道を通り、

点Aから点Bまで移動することを考えます。

規則

「一回だけ左に1進み、それ以外は右または上に進む」

ただし、進む方向を変更できるのは正方形の頂点の場所だけです。

点 A にもどったり、点B からもどったりはできません。

また、規則に従うかぎり、同じ道を2回以上通ることも可能で す。

このとき、《図1》の点 A から点 B までの移動経路は 10 通りあります。

では、《図2》、《図3》 のそれぞれについて、

考えられる移動経路は何通りありますか。

3073

----------------------------------------------------

----------------------------------------------------

解法例

図2の場合

図の赤い部分を左に1回進む場合、

3074_3

4通り、

図の赤い部分を左に1回進む場合、

3075

3通り、

図の赤い部分を左に1回進む場合、

3076

2通り、

図の赤い部分を左に1回進む場合、

3077

2通り、

図の赤い部分を左に1回進む場合、

3078

3通り、

図の赤い部分を左に1回進む場合、

3079

4通り、

全部で、4+3+2+2+3+4=18通り

図3の場合

図の赤い部分を左に1回進む場合、

30710

10通り、

図の赤い部分を左に1回進む場合、

30711

6通り、

図の赤い部分を左に1回進む場合、

30712

3通り、

図の赤い部分を左に1回進む場合、

30713

8通り、

図の赤い部分を左に1回進む場合、

30714

9通り、

図の赤い部分を左に1回進む場合、

30715

8通り、

図の赤い部分を左に1回進む場合、

30716

3通り、

図の赤い部分を左に1回進む場合、

30717

6通り、

図の赤い部分を左に1回進む場合、

30718

10通り、

全部で、(10+6+3)×2+(8+9+8)

=38+25

=63通り

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ!  ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

塗り方は何通り?(今年 2019年 大阪星光学院中学)

----------------------------------------------------

下の図の正六角柱の8つの面を、

8色の絵の具のうちの何色かを使って塗ることを考えます。

隣り合う面は異なる色を使い、

また回転したりひっくり返したりして同じ塗り方になるものは同じとみなします。

このと き、

(1)8色すべてを使って塗る方法は 通りありますか?,

(2)8色から異なる3色を選んで塗る方法は 通りありますか?

Bandicam_20190120_085349658

----------------------------------------------------

----------------------------------------------------

解法例

106

(1)塗り方は全部で

8×7×6×5×4×3×2×1 通りなのですが、

側面は、

ABCDEF も

BCDEFA も

CDEFAB も

DEFABC も

EFABCD も

FABCDE も回転すれば同じになり、

上面と下面は、

AとBもBとAもひっくり返せば同じなので、

8×7×6×5×4×3×2×1÷6÷2=3360通り

(2)上面と下面が違う色では塗ることができないので、

上面と下面は同じ色で8通りに塗ることができます。

側面の1面が7通り、隣の面が6通りですが、

ABABAB も BABABA も同じになるので、

8×7×6÷2=168通り



----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

今年2019年の中学入試で出題が予想される、塗り分け問題の解法例

----------------------------------------------------

何色でぬり分けられる?(お茶の水女子大学附属中学 2010年)

図の線でかこまれた部分を、色分けしてぬっていきます。

同に色がとなりあわないようにぬると最低何色の色が必要ですか。

6061

----------------------------------------------------

----------------------------------------------------

解法例

Bandicam_20190106_101012698_2

Bandicam_20190106_101027946

Bandicam_20190106_101037275

----------------------------------------------------

----------------------------------------------------

塗り分けには何色必要か?(海陽中等教育学校 2013年改題)

図のような五角形と六角形で作られたサッカーボールがあります。

辺をはさんだ隣どうしの面が、

同じ色にならないように塗り分けるには、

最低何色必要でしょうか?

1

----------------------------------------------------

----------------------------------------------------

解法例

下の図のように、

1つの正五角形のまわりには、5つの正六角形がきます。

この5つの正六角形をぬり分けるのに、

少なくとも3色必要です。

さらに、正五角形には正六角形の3色とは異なる色が必要なので、

3色でぬり分けることはできません。

最低4色必要です。

2

----------------------------------------------------

----------------------------------------------------

塗り分け方は何通り?(六甲中学 2014年)

①~⑥の6つの部分を,赤,青,黄,緑の4色でぬり分けます。

同じ色がとなり合わないようにするとき,

何通りのぬり方がありますか。

1

----------------------------------------------------

----------------------------------------------------

解法例

右半分は下図のように4色が必要なので、 

2

4×3×2×1=24通りのぬり方ができます。

それに対して、左半分は、

⑥は①以外の3通りですが、

例えば②の色にすると、⑤は①か③の色で2通りのぬり方ができ、 

3

 

4

 ⑥を④にしても⑤は以下の2通り、

5

 

6

 ところが、⑥を③の色にすると、⑤は①の色しかなく1通り、 

7

 したがって、24×(2+2+1)=120通り です。

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ!  ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

支払い方は何通り? (今年 2018年 サレジオ学院中学)

----------------------------------------------------

Aさんは、あるお店で買い物をしたら、

3800円の代金を支払うことになりました。

Aさんは、1000円札を3枚、

500円玉を2枚、

100円玉を6枚、

50円玉を2枚、

10円玉を10枚持っています。

このとき、おつりの出ない支払い方は全部で何通りですか?

Ilm16_aa04033s

----------------------------------------------------

----------------------------------------------------

①1000×2+500×2+100×6+50×2+10×10

②1000×3+100×6+50×2+10×10

③1000×3+500×1+100×3

④1000×3+500×1+100×2+50×2

⑤1000×3+500×1+100×2+50×1+10×5

⑥1000×3+500×1+100×2+10×10

⑦1000×3+500×1+100×1+50×2+10×10

以上7通り

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

条件に合う並び方は何通り?(今年 2018年 公文国際学園中等部)

----------------------------------------------------

A、B、C、D、Eの5人が横一列に並びます。

次の3つのルールすべてに合う並び方は何通りありますか。

・「AはDより左側に並ぶ」

・「CはDの左隣に並ぶ」

・「AとBは隣には並ばない」

Maehe_narae

105

----------------------------------------------------

----------------------------------------------------

解法例

CDをセットにして考えます。

CDの左側にAがくる並び方は、

AEB

BEA の2通りと、

AE

EA の2通りと、

A CD BE

A CD EB の2通りで、

全部で6通りです。

----------------------------------------------------

----------------------------------------------------

682

----------------------------------------------------

下のファミリーページにもどうぞ! ↓

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

中学受験算数、分野別解法集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

中学受験算数解法1000→「イメージでわかる中学受験算数」

より以前の記事一覧

2019年7月
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31