N進法

カードを規則的に取り除く難問(開成中学 2009年 )

---------------------------------------------------

----------------------------------------------------

1,2,3、・・・ n の数が1つずつ書かれた n 枚のカードを

時計回りに数の小さい順に円形に並べます。

次の規則にしたがって、カードを1枚ずつ取り除いていくとき、

最後に残るカードがどれであるかを考えます。

・ まず、1の書かれたカードを取り除く。

・ あるカードを取り除いたら、次に、

 そのカードから時計回りに数えて2枚目のカードを取り除く。

・これをカードが1枚だけ残るまで繰り返す。

たとえば、n=13のときは図1のようにカードが取り除かれ、

最後に10の書かれたカードが残ります。

Zu1

(×印は取り除いたカードを表します)

このとき、次の問いに答えなさい。

(1)n=8のとき、最後に残るカードに書かれた数を答えなさい。

(2)n=16のとき、1周目にカードを取り除いた時点で、

図2のように8枚のカードが残り、

次に2の書かれたカードから取り除くことになります。

もし必要ならばこのことを用いて、

n=16のとき最後に残るカードに書かれた数を答えなさい。

また、n=32 とn=64のとき、

最後に残るカードに書かれた数をそれぞれ答えなさい。

Zu2

(3)n=35のとき、

1周目に1,3,5の書かれたカードを取り除いた時点で、

残るカードが32枚で、

次には7の書かれたカードを取り除くことになります。

もし必要ならばこのことを用いて、n=35のとき、

最後に残るカードに書かれた数を答えなさい。

(4)n=100のとき、

1周目に36枚のカードを取り除いた時点で残るカードは64枚です。

もし必要ならばこのことを用いて、n=100のとき、

最後に残るカードに書かれた数を答えなさい。

(5)n=2009のとき、最後に残るカードに書かれた数を答えなさい。

---------------------------------------------------

----------------------------------------------------

親子で考えた解法例

(1)n=8の図を描いてみると、図3のようになるね」

Zu3

「8になる」

「(2)n=16のとき、図2のように8枚の偶数のカードが残る。

これは図4の8の場合と同じ。

(1)では8の位置のカードが残ったので、この場合も8の位置・・・」

Zu4_4

「16だ」

「n=32のときは、まず1周目に奇数のカードが取り除かれる。

すると残ったカードは2,4,6,8、・・・32。

これは、1,2,3、・・・16まで並んでいるのと同じ。

だからn=16のときの最後が16だったので、この16に相当するのは32。

次にn=64のときも同じように1周目に奇数がすべて取り除かれ

2,4,6、・・・64の32枚の偶数のカードが残る。

これはn=32のときと同じだから・・・」

「64だ」

「(3)n=35の場合も 1,3,5を取り除くと32枚残る。

32枚になったところで、図5のようにn=32と見なすことができるね」

Zu5

「次に取り除くカードは7?」

「そう、7をスタートの1と考えて、n=32って考えると、

32のカードの場所にあるカードが最後に残ることになるわけ」

「6か・・・」

「(4)n=100のとき、36枚取り除くと64枚になるって問題にヒントがでてるね」

「64枚のカードで考えればいいってこと?」

「そう、n=64のとき、最後に残るのは64だったね。

だから、n=100のとき、

残りカードが64枚になったときのスタートの数字と、

その前の数字を調べてみると・・・

36枚目に取り除くのは、36x2-1=71 のカードで、

次に取り除くのは73のカードになる」

「こんがらがってきた」

「図6を見て」

Zu6

「72だ」

「(1)、(2)から、n の数を2倍、2倍としていくと、

最後に残るカードも2倍、2倍となることがわかる?」

「わからない」

「そうなってるでしょ」

「そう言われてみると・・・」

「(4)でn=100のとき、最後に残る数は72ということがわかったから、

これを2倍、2倍、・・・としてみて2009に近づけてみる」

「地道な方法だな」

n=200 のときは 72x2

n=400 のときは、72x2x2

n=800 のときは、72x2x2x2

n=1600 のときは、72x2x2x2x2 =72x16=1152

「だから、n=2009のとき、

1周目に409枚のカードを取り除くと残るカードは1600枚になるね。

これを利用する・・・」

「どう利用するの?」

Zu7

「409枚目に取り除くカードは、409x2-1=817 で、

次に取り除くカードは819になるでしょ?」

「図を見ればそうだけど・・・」

「で、(5)の答えは819+72x16=818+1152=1970」

「n=2009にしたのは2009年の入試問題だからだな」

「そうでしょうね」

「何で答えが1970なんだろう?この年なんかあったのかな?」

「単に算数の問題でしょ」

----------------------------------------------------

----------------------------------------------------

↓こちらファミリーページにもどうぞ!

問題+解法のセット集→「算数解き方ポータル」

どう解く?中学受験算数

パズルのような算数クイズ

算数オリンピック問題に挑戦!

全国170中学校の入試問題と解法

これが中学入試に出た図形問題!

公式、法則、受験算数の極意

中学受験算数分野別68項目へ

解けるかな?算数の難問に挑戦!

大人だって解ける、受験算数

算数、解法のリンク集

図で解く算数

大人の脳勝算数 

難問、奇問、名作にチャレンジ!

フォト&ムービーで見る、不思議な世界 

にほんブログ村 受験ブログ 中学受験(指導・勉強法)へ
にほんブログ村

スマートホンアプリ「立方体の切り口はどんな形?」(ネット環境でのFlashアニメーション)

中学受験算数解法1000→「イメージでわかる中学受験算数」

N進法の基本問題(学習院女子中等科 2012年)

----------------------------------------------------

5個並んだマスに黒色をぬって整数を表すことにします。黒色をぬる場所によって、

1

とします。このようにすると、

2

と表せます。

では、

(1)3 はいくつを表しますか。

(2)このぬり方で13を表してください。

(3)このぬり方で、0からいくつまでの整数をを表すことができますか。

(4)同じように並んだマスを用いて、0から129の整数を表すには、最低いくつのマスを並べる必要がありますか。

ぬり方の規則性と解答例

-----------------------------------

-----------------------------------

-----------------------------------

スマートホンアプリ「立方体の切り口はどんな形?」(ネット環境でのFlashアニメーション)

スマホ向け解法集→「中学受験ー算数解き方ポータル」

-----------------------------------

N進法→N進法のイメージ問題(智辯学園和歌山中学 2009年)

----------------------------------------------------

3つの円形の板があり、点P,Q,Rがそれぞれ移動します。点Pは、1秒ごとに、0→1→2→3→0→1→・・・ の順に移動し、点Qは、点Pが1周するごとに、0→1→2→3→4→0→1→・・・の順に移動し、点Rは、点Qが1周するごとに、0→1→2→3→4→5→0→1→・・・の順に移動します。
はじめに、点P,Q,Rともに「0」の位置にいるとき、次の問に答なさい。

(1)P,Q,Rのいる位置を順に読み上げると、最初は「000」です。P,Q,Rのいる位置が、はじめて「111」となるのは何秒後か答えなさい。

(2)動きだして75秒後のP,Q,Rの位置を順に読み上げなさい。

1

考え方と答え

-----------------------------------

-----------------------------------

スマートホンアプリ「立方体の切り口はどんな形?」(ネット環境でのFlashアニメーション)

スマホ向け解法集→「中学受験ー算数解き方ポータル」

N進法のイメージ問題(智辯学園和歌山中学 2009年)

----------------------------------------------------

3つの円形の板があり、点P,Q,Rがそれぞれ移動します。点Pは、1秒ごとに、0→1→2→3→0→1→・・・ の順に移動し、点Qは、点Pが1周するごとに、0→1→2→3→4→0→1→・・・の順に移動し、点Rは、点Qが1周するごとに、0→1→2→3→4→5→0→1→・・・の順に移動します。
はじめに、点P,Q,Rともに「0」の位置にいるとき、次の問に答なさい。

(1)P,Q,Rのいる位置を順に読み上げると、最初は「000」です。P,Q,Rのいる位置が、はじめて「111」となるのは何秒後か答えなさい。

(2)動きだして75秒後のP,Q,Rの位置を順に読み上げなさい。

1

考え方と答え

-----------------------------------

-----------------------------------

スマートホンアプリ「立方体の切り口はどんな形?」(ネット環境でのFlashアニメーション)

スマホ向け解法集→「中学受験ー算数解き方ポータル」

N進法→どんな規則にしたがっていますか?(芝浦工業大学柏中学 2011年)

下の図のように、ある決まりにしたがって整数を表しました。Ⅹはいくつですか。

415

考え方と答え

-----------------------------------

-----------------------------------

スマートホンアプリ「立方体の切り口はどんな形?」(ネット環境でのFlashアニメーション)

スポンサード リンク